Modular functions and the uniform distribution of CM points
نویسنده
چکیده
(1) zd = { i √ d 2 if d ≡ 0 (mod 4), −1+i √ d 2 if d ≡ 3 (mod 4). The j-function has the remarkable property that j(zd) is an algebraic integer of degree h(−d), the class number of K = Q(zd). In fact, K(j(zd)) is the Hilbert class field of K [4]. The first few values of j(zd) are: j(z3) = 0, j(z4) = 12 , j(z7) = −153, j(z8) = 20, j(z11) = −323 j(z15) = −191025−85995√5 2 , j(z19) = −963, j(z20) = 632000+282880 √ 5,
منابع مشابه
Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کامل$C$-class functions on common fixed point theorems for weak contraction mapping of integral type in modular spaces
In this paper, we use the concept of $C$-class functions introduced by Ansari [4] to prove the existence and uniqueness of common fixed point for self-mappings in modular spaces of integral inequality. Our results extended and generalized previous known results in this direction.
متن کاملTransport Property Estimation of Non-Uniform Porous Media
In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...
متن کامل